
Cyrille Chavet · Philippe Coussy Editors

Advanced
Hardware
Design for Error
Correcting
Codes

Advanced Hardware Design for Error
Correcting Codes

Cyrille Chavet • Philippe Coussy
Editors

Advanced Hardware Design
for Error Correcting Codes

123

Editors
Cyrille Chavet
University of South
Brittany, Lorient, France

Philippe Coussy
University of South
Brittany, Lorient, France

ISBN 978-3-319-10568-0 ISBN 978-3-319-10569-7 (eBook)
DOI 10.1007/978-3-319-10569-7
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014951358

© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Foreword

For many years, experts more expert than the rest have regularly heralded the
end of research focused on the physical layer of telecommunications. Some claim
that the best has already been delivered from the promises offered by the theory
of communication, others say that the theoretical limits predicted will never be
reached by simple means. As Costello and Forney explained in an award winning
IEEE article [1], this pessimistic standpoint is nothing new and some were already
proclaiming “Coding is dead” in the early 1970s, only 20 years after the pioneering
work of Claude Shannon. Other experts, this time in the field of microelectronics,
have also regularly announced the end of CMOS technology, starting as early as the
mid-1980s when the submicron barrier for mass production seemed insurmountable
to some. “CMOS is dead” was also commonly heard.

Fortunately, these doubts were swept away each time they were raised. And this
was often because of the need for increasingly demanding telecommunications:
farther, faster, more reliable, that microelectronics increased its efforts in the minia-
turization of components. Conversely, the steady progress of the semiconductor
industry has opened the way to new processing information algorithms unforeseen
at the time of the first generations of integrated circuits. Information, as understood
by Shannon, and the transistor were born around the same time in the legendary Bell
Labs and, from that time, have continued to join hands to lead to ever more effective
telecommunications systems which have become indispensable in our daily lives.

Among the processes made possible today by high density integration on silicon,
distributed error correction coding (or channel coding) came to occupy a place of
prime importance. To put it simply, distributed coding is to monolithic coding what a
combination of small mathematical relationships is to one complex equation. It was
by adopting the point of view of distributed computing that error correction coding
proved able to find its best practical solutions to achieve optimality, or nearly. Rather
than trying to build a codeword by a single coding operation and recover it through
a single decoding step, it is wiser to adopt the strategy of “divide and rule”, not at
the cost of lesser performance, quite the contrary.

v

vi Foreword

In the early 1990s, the competition (all virtual) between monolithic coding
and distributed coding in the race for optimality designated its winner. On the
one hand, a team from the prestigious Jet Propulsion Laboratory in Pasadena was
working to develop a Viterbi decoder for a 16384-state convolutional code: the Big
Viterbi Decoder (BVD) [2]. It had to consist of 256 identical integrated circuits
each processing 64 states, plus additional control circuits. The correction power
significantly exceeded the state of the art but an entire table was needed to lay
the decoder. On the other hand, in a little known French laboratory, an electronics
engineer wondered whether two small convolutional codes, typically of 8 or 16
states, associated in an original way and iteratively decoded one after another could
not do better than the Californian code. The answer was affirmative: three integrated
circuits (same number as iterations) were enough to provide better correction power
than the BVD.

A large part of the community of digital communications therefore became
interested in this new way of building a redundant code that its inventor [3] later
named turbo code [4] to keep it significantly shorter than “parallel concatenation
of recursive systematic convolutional codes decoded iteratively”. It also provided
the opportunity to take a new look at and give a new impetus to LDPC codes
[5, 6] to which many researchers turned their attention, whether for optimization
or implementation. Different distributed structures, in parallel, in series or both
together, were proposed one after the other. From the most compact of distributed
codes—a turbo code with only two component codes—to more distributed—LDPC
codes or the most recent and promising polar codes [7]—all kinds of solutions were
possible. In addition to studies on “modern coding” [8], the philosophy of decoding
by message passing was also expanding its ramifications to applications other than
channel coding, for example equalization [9, 10], demodulation [11] or joint source-
channel coding [12]. “Do not lose any of the pieces of information available in the
receiver whatever the level” became the leitmotif of many researchers.

Some were also questioning what once had been considered absolute certainties:
but no, on balance, coding is not only a matter of mathematics. Because informa-
tion theory was built on non-trivial mathematical concepts, such as entropy and
mutual information, it was indeed long believed that practical solutions would be
exclusively provided by mathematics. But math is especially used to justify and set
parameters, rarely to create and build. While algebra, probability and graph theory
continue to be part of the arsenal of skills of engineers and researchers in commu-
nication technologies, other knowledge and skills have also become indispensable:
computer science, electronics, and, in particular, parallel architectures needed to
obtain high throughputs. The days when it was legitimate to invent a code or any
algorithm without proposing practical ways of decoding or implementation are over.
Not only must processes be compatible with what electronics can provide but other
significant constraints such as energy consumption in embedded systems or the
speed of information transfer in highly distributed structures can be crucial.

The proliferation of new applications (very high throughput cellular systems,
sensor networks, Internet of Things, etc.) and the demand for improved performance
are still ongoing challenges. It is no longer just a matter of bits per second per hertz

Foreword vii

or bit error rate; now it is also necessary to consider other criteria such as joules
per bit (in transmission as in reception processing), flexibility and interoperability.
A new generation of researchers has emerged, mastering at the highest levels
the interdisciplinarity necessary to cope with these multiple constraints. Some
of these researchers have come together to write this book with the latest ideas
and developments in the design of circuits for error correction encoding and
decoding. Tomorrow’s telecommunications are in their hands and we can certainly
say alongside them: “Coding and CMOS are still alive, and for a long time to come”.

[1] Costello DJ, Forney GD (2007) Channel coding: the road to channel capacity.
Proc IEEE 95(6):1150–1177

[2] Statman J, Rabkin J, Siev B (1989) Big Viterbi decoder (BVD) results for
(7,1/2) convolutional code. TDA Progress Report 42–99, JPL, November 1989

[3] Berrou C (1991/1995) Error-correction coding method with at least two
systematic convolutional codings in parallel, corresponding iterative decoding
method, decoding module and decoder. Patents no 9,105,280 (France, April
1991), no 5,446,747 (USA, August 1995)

[4] Berrou C, Glavieux A, Thitimajshima P (1993) Near Shannon limit error-
correcting coding and decoding: turbo-codes. In: Proceeding of IEEE ICC ’93,
Geneva, pp 1064–1070, May 1993

[5] Gallager RG (1962) Low-density parity-check codes. IRE Trans Inf Theory
IT-8:21–28

[6] MacKay DJC, Neal RM (1995) Good codes based on very sparse matrices. In:
Boyd C (ed) Cryptography and coding 5th IMA Conference, Lecture notes in
computer science, no 1025. Springer, Berlin, pp 100–111

[7] Arikan E (2009) Channel polarization: a method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels. IEEE Trans
Inf Theory 55(7):3051–3073

[8] Richardon T, Urbanke R (2008) Modern coding theory. Cambridge University
Press, New York

[9] Douillard C, Picard A, Didier P, Jézéquel M, Berrou C, Glavieux A (1995)
Iterative correction of intersymbol interference: turbo-equalization. Eur Trans
Telecom 6(5):507–511 (special issue on turbo decoding)

[10] Laot C, Glavieux A, Labat J (2001) Turbo equalization: adaptive equalization
and channel decoding jointly optimized. IEEE J Select Areas Commun
19(9):1744–1752

[11] Hoeher P, Lodge J (1999) Turbo DPSK: iterative differential PSK demodula-
tion and channel decoding. IEEE Trans Commun 47(6):837–843

[12] Hagenauer J, Görtz N (2003) The turbo principle in joint source channel
coding. In: Proceeding of ITW 2003, Paris, pp 275–278, April 2003

Claude Berrou
May 2014

Contents

1 User Needs . 1
David Gnaedig

2 Challenges and Limitations for Very High Throughput
Decoder Architectures for Soft-Decoding . 7
Norbert Wehn, Stefan Scholl, Philipp Schläfer,
Timo Lehnigk-Emden, and Matthias Alles

3 Implementation of Polar Decoders . 33
Gabi Sarkis and Warren J. Gross

4 Parallel Architectures for Turbo Product Codes Decoding 47
Camille Leroux, Christophe Jego, and Patrick Adde

5 VLSI Implementations of Sphere Detectors . 73
Johanna Ketonen, Markus Myllylä, Yang Sun,
and Joseph R. Cavallaro

6 Stochastic Decoders for LDPC Codes . 105
François Leduc-Primeau, Vincent C. Gaudet,
and Warren J. Gross

7 MP-SoC/NoC Architectures for Error Correction . 129
Carlo Condo, Maurizio Martina, and Guido Masera

8 ASIP Design for Multi-Standard Channel Decoders . 151
Purushotham Murugappa, Amer Baghdadi,
and Michel Jezequel

9 Hardware Design of Parallel Interleaver Architectures: A Survey 177
Cyrille Chavet, Awais Hussain Sani, and Philippe Coussy

ix

Chapter 1
User Needs

David Gnaedig

TurboConcept is an industry-reference provider of Intellectual Property Cores (IP
Cores) for advanced Forward Error Correction (FEC) techniques (turbo codes and
LDPC codes). We propose IP Core products, which offer to our customers the best
trade-offs between error correction capability, throughput, silicon cost, and power
consumption. Since 2007, TurboConcept is part of the Newtec group, specializing
in satellite communications equipments and systems. We have developed IP cores
implementing encoders and decoders addressing most of the families of error
correcting codes:

– Turbo codes: since the development of the first DVB-RCS turbo decoder in 1999
(a duo-binary turbo code), we have developed IPs for all flavors of convolutional
turbo codes that are specified in standards such as the CCSDS, WCDMA,
Homeplug AV, WiMAX, LTE.

– LDPC codes since their adoption in 2002 by the DVB-S2 standard. We have
naturally extended this IP to cover also DVB-T2, DVB-C2, and have then
developed products for WiMAX, G.hn, and more recently WiFi 802.11ac.

– Turbo product codes: two- and three-dimensional product codes.
– Convolutional codes for WiFi, LTE, WCDMA.
– BCH codes, that are used in concatenation with LDPC codes in DVB-S2 standard

for instance but also for other proprietary concatenation schemes.

We also propose proprietary error correcting codes based on either turbo or
LDPC codes for various applications: satellite communication, wireless back-
haul, . . .

Our FEC IP cores target both ASIC and FPGA designs. During the first years of
the company most IP cores were designed for FPGA devices. But since 2005 with

D. Gnaedig (�)
TurboConcept, 185 rue Joseph Fourier, 29280 Plouzane, France
e-mail: david.gnaedig@turboconcept.com

© Springer International Publishing Switzerland 2015
C. Chavet, P. Coussy (eds.), Advanced Hardware Design for Error
Correcting Codes, DOI 10.1007/978-3-319-10569-7__1

1

mailto:david.gnaedig@turboconcept.com

2 D. Gnaedig

the emergence of the WiMAX market and later on with the throughput increase of
3G cellular systems, and in particular the evolution toward LTE, we have developed
a range of IPs that are integrated into ASIC designs. Our sales volume is today
a balance between FPGA and ASIC users. It is also worth noting that for some
markets (for instance LTE base station) we propose two different IP cores, one
optimized for ASIC designs and another optimized for FPGA design. For ASIC,
the IP is optimized for best area and specifically memory area and low power
consumption. For FPGA designs, the IP architecture takes advantage of specific
resources available for “free” in FPGA devices: dual port RAMs, a large number
of registers enabling high pipe-lining and thus very high clock frequency, multiple
clock domains, . . .

Our story starts with turbo codes and related iterative decodable codes, back
in the second half of the 1990s. At that time, it was a real challenge to have
an FPGA or an ASIC hosting such a complicated function as a turbo decoding,
especially when compared to legacy convolutional codes. The first prototype
chip initiated by turbo codes inventors was based on a “one-chip-per-iteration”
pipelining [5]. Moore’s law is obviously a great enabler in the wide adoption of
turbo and LDPC codes: it helped greatly to minimize the complexity overhead
of iterative decoding, as compared to legacy FECs, even in the context of ever-
higher-throughput applications. Algorithmic advances also helped significantly: the
transposition of the probabilistic decoding equations into the logarithmic domain
led to low complexity algorithms to decode efficiently turbo codes (log-MAP [1])
or LDPC codes (min-sum [2]). At the architectural level, significant breakthroughs
have enabled to develop low complexity and high throughput decoder architectures.
First, sliding window algorithms [3] enabled to reduce drastically the required
memory of the BCJR algorithm while maintaining acceptable performance. Second,
the concept of parallel soft-in–soft-out implementations accessing in concurrence
to a shared memory, applicable to both turbo and LDPC code decoding enabled to
reach several tens of Mbits/s and up to several Gbits/s for LDPC codes using actual
technologies. Additionally, the concept of “shuffled scheduling” (also referred to
as “layered” or “turbo” scheduling) of LDPC codes has also contributed to almost
dividing by two the required number of iterations and thus increasing the throughput
equivalently. Finally, resolving memory access issues has been a critical issue in
massively parallel architectures. It has been tackled by taking into account the
constraints of the architecture early in the design of the code. Such architecture-
aware code design techniques have been used for:

– Turbo codes through the design of a structured interleaver (e.g., DVB-RCS code
with the ARP interleaver, or quadratic interleaver used in the LTE specification.
This structure of the interleaver can be exploited by the parallel decoding
architecture to enable collision free memory accesses.

– LDPC codes through the design of a prototype parity matrix which specifies the
complete parity matrix of the code in a condensed way. The expansion factor
that enables to derive the binary parity matrix from the prototype matrix offers a
natural level of parallelism that is then exploited when designing high throughput
architectures.

1 User Needs 3

The choice of a given code for a given application is usually driven by the
requirements of the application in terms of latency, SNR operation range, target
BER, flexibility (block size, code rates, . . .). But we have also encountered cases
where the choice of an error correcting code is driven by marketing objectives
rather than technical reasons. For instance LDPC codes are seen sometimes as
a “new” technology while turbo codes are present since many years into various
applications and therefore LDPC may be selected by customers even if turbo codes
may have superior error decoding performance for this application. A single code
family that would outperform other codes over all possible applications does not
exist yet and will to our opinion never exist. Therefore, a trade-off shall be made
depending on the most important application requirement. Usually, turbo codes have
superior BER performance for small block sizes and low code rates and enable a
large flexibility both in block size (using a parametric interleaver) and code rates
(through puncturing). Turbo product codes have very good performance in the high
code rate region typically around above 0.80 with a very low complexity. They are
attractive for very high throughput applications, owing their inherent parallelism
ability, but they offer a poor flexibility. Convolutional codes decoded by the Viterbi
algorithm have their interest for very short block size (typically a few tens of
bits) and/or for applications where the critical factor is the lowest latency due
to the fact that they do not require an iterative decoding scheme. LDPC codes
have better performance for very large (typically a few tens of thousands bits)
to medium block sizes (around a few thousands bits) and have the advantage of
enabling high throughput parallel implementation with an affordable complexity.
They lack however in a large flexibility as each block size-code rate combination
requires to specify one parity check matrix. Also encoding complexity of LDPC
codes grows quadratically with the block size while the encoding complexity of
convolutional code and convolutional turbo code grows only linearly with the
block size. This apparent complexity drawback can however be greatly mitigated
by introducing specific structures in the parity check matrix of LDPC code like a
so-called “staircase” structure of the parity bits sub-matrix.

These general trends are continuously evolving due to large research efforts
devoted to code design. LDPC codes are getting more and more efficient with
small block sizes especially when considering the non-binary LDPC codes. New
interleaver design techniques for turbo code bring significant improvement in the
error floor region over previous generation, especially for high code rates, one of
the turbo code weaknesses. In addition to the evolution of the now “old” turbo
and LDPC code families, brand new code structures are being introduced: spatially
couples LDPC codes, polar codes which are proven to achieve (and not only
approach) capacity of a given channel.

Once the code family is selected, to define a set of codes suitable for the
application, other key parameters have to be determined in light of their impact
on the implementation complexity. For turbo codes, this includes the choice of the
recursive systematic convolutional code (larger memory induces lower error floor
but at the cost of higher complexity), the design of the interleaver that influences
greatly the performance in the error floor region, the puncturing scheme. For an

4 D. Gnaedig

LDPC code, the parity check matrix density has an influence on the error floor but
also on the convergence and on the complexity. Also a specific structure in the parity
bits region of the parity check matrix is helpful to enable simple encoding scheme.

With standardized applications, the choice of the code itself is obviously
not part of our degrees of freedom, but a constraint to which the designed IP
core product must comply with. In light of our implementation expertise, we
see however how choices made on code design may be very helpful to reduce
implementation complexity without sacrifying the error decoding performance. For
example, for DVB-S2 codes, there exists the well-known issue of double-diagonal
events present in the protograph matrix. Resolving this issue can be performed
with various architectural solutions that have an impact on the implementation
complexity, throughput, and/or performance. Therefore, if double-diagonal events
can be avoided when designing the code, it would be beneficial for enabling low
complexity LDPC decoder architectures. An active participation to standardization
bodies through the proposition of specific coding schemes is the natural way to
influence the choice of the channel coding scheme. To this end, TurboConcept has
participated to several standardization processes: DVB-RCS, DVB-S2, and more
recently to DVB-SX (as part of Newtec).

Proprietary applications give a larger degree of freedom in the code design and
the adaptation of the code design to the target hardware implementation. These
include satellite communication systems, wireless backhaul, magnetic storage (hard
disk drives), military and governmental . . . We have developed coding schemes
(association of code and modulation) for some of these applications.

When designing products incorporating error correcting codes we need to take
into account three typical constraints: throughput, area, and power consumption.
First, in terms of throughput we saw the demand for increasing throughput from
a few Mbits/s in the early 2,000 years (e.g., in cellular, satellite communications
applications) to today’s several hundreds of Mbits/s in most wireless applications.
Our latest products are scaled to offer several Gbits/s in a wireless physical layer
system. Optical links and other markets have even higher throughput demands, but
we are not addressing them specifically up to now. Second, for a given throughput
requirement, a low implementation area is always desirable for obvious cost reasons.
The area constraint greatly varies on the market. Indeed the area being mostly a cost
issue, the impact of the area is essentially linked to the other cost elements from
the application (e.g., cost of the radio bandwidth, number of users, other operational
costs). As an example, if we consider the satellite market, the hub operating the
network can afford a large (and expensive) FPGA and therefore a code of higher
implementation complexity for the return link. The gain in signal-to-noise ratio
translates into more available capacity and thus additional users for the same satellite
frequency band. This naturally induces an increased profitability. On the other side,
for a consumer equipment where the cost of implementation is of primary interest,
the constraint on the area is more stringent. On an ASIC target, the area is mainly
driven by the memory area and therefore, the size of the code impacting largely
the memory area is an important trade-off between the implementation complexity
and the error decoding performance of the code. For an FPGA implementation,

1 User Needs 5

the decoder needs to fit into a low-end FPGA with limited resources (logic and
memory). Assuming a throughput from a few tens of Mbits/s to a few hundreds of
Mbit/s turbo codes, LDPC code can today be implemented even in low cost FPGAs.
Finally, power consumption is obviously getting more and more important, and the
relative importance of low power aspects is increased for mobile equipment. We
characterize our products by actual numbers (technology dependant) but also by
using some design rules and guidelines that ensure the core is not wasting power
useless (systematic use of enable signals propagated along the data path, no free-
running logic, minimal access to memory blocks, . . .).

When designing our products especially when targeting very high throughput
architectures we faced several algorithmic and architecture problems that needed to
be solved efficiently. On the algorithmic side, increasing the throughput of decoder
requires specific techniques in order to maintain good error decoding performance
and fast convergence. For example for convolutional turbo code, dealing with
very high code rates induces specific algorithm design as the conventional sliding
window BCJR algorithms using acquisition for initializing border state metrics are
not efficient (and even useless) [4] when code rates grow above 0.95, as it is the case
of HSPA. For LDPC codes, higher throughput requires a higher level of parallelism
that makes more challenging the selection of a good scheduling for layered decoding
architectures. On the architectural side, developing high throughput decoders means
that the interfaces and the interleaver (in a BICM scheme) shall support the same
level of throughput. Therefore the requirement for high throughput induces to design
high speed parallel interleavers. With the increase of the throughput requirement in
the future this issue is getting more and more complex to solve because contrary
to the code design that have been performed in light of parallelism constraints,
it is rarely the case for the associated external interleaver. One last constraint
is related to the validation of the performance for FER as low as 10−11. This
performance validation is necessary since implementation and especially fixed point
representation may introduce a floor, even if the code itself has no floor, This is
usually achieved by using an FPGA board able to simulate at throughput of several
Gbits/s.

Advanced error correcting codes have made significant progress over the last
20 years and are now used in a large range of applications. There are still areas
that need substantial improvements. First, the choice of a FEC coding scheme
is often based on some simplified channel modeling (AWGN being the simplest
commonality). More progress can be made by considering a refined channel model
of the application and to optimize the code in light of this channel model, which is
not a simple task. Indeed, refining the channel model often results in a (much) larger
design space (e.g., phase noise parameters, multi-path characteristics, non-linearity
models). More theoretical methodologies need to be developed in order to find good
codes in this context. Second, another important aspect is to find techniques for
predicting and designing codes for high order modulations especially in the error
floor region. Bit interleaved coded modulation has been used in the past as a mean to
design independently the code and the modulation and to achieve good performance
on high order modulations. But this technique does not address the optimization

6 D. Gnaedig

of the performance in the error floor region. Finally, techniques for finite length
optimization of codes are still an area that needs to be explored. The techniques
that are usually used to characterize code ensembles assume infinite block sizes and
ideal BP decoder that does not suffer from correlation due to cycles in a real iterative
decoder. Finding optimal code for finite length code is still a challenging problem.

The future challenge that needs to be tackled by the next generation codes and
architectures is flexibility. Not flexibility in the sense of an universal decoder that
would supports all types of codes of all possible standards. This kind of universal
decoder does not seem today to be an industrial requirement, and it is sometimes
more complex than using dedicated and optimized cores, one per application. By
flexibility, we mean the ability for the code and the decoder to adapt dynamically
to changing channel conditions in order to always obtain the best error decoding
performance while minimizing power consumption. One mean to achieve this
objective is to design codes that can be decoded algebraically when the SNR is high
thus enabling high throughput and low power. When the SNR is low an iterative
decoder would be used in order to achieve performance close to the Shannon limit.
Algorithms such as the bit-flipping algorithm for LDPC codes seem to be very
promising in this sense.

In conclusion, we envisage the evolution of error correction coding driven by
three main requirements. First, continuous increase of throughput requirements:
next generation broadband wireless access systems target maximal data rate in the
order of 1 Gbits/s on a handheld device. Second, reducing power consumption will
become a major requirement even for non-battery powered applications, and finally,
improved error decoding performance (closer to Shannon capacity) by taking into
account refined channels models during the code design stage.

References

1. Robertson P, Villebrun E, Hoeher P (1995) A comparison of optimal and sub-optimal decoding
algorithm in the log domain. Proceedings IEEE international conference on communications,
Seattle, June 1995, pp 1009–1013

2. Fossorier M, Mihaljevic M, Imai H (1999) Reduced complexity iterative decoding of low-
density parity check codes based on belief propagation. IEEE Trans Commun 47:673–680

3. Viterbi AJ (1998) An intuitive justification and a simplified implementation of the MAP decoder
for convolutional codes. IEEE J Sel Areas Commun 16:260–264

4. Boutillon E, Sanchez-Rojas J-L, Marchand C (2013) Compression of redundancy free trellis
stages in Turbo-decoder. Electron Lett 49(7):460–462

5. CAS 5093 40 Mb/s Turbo code decoder. December Rev 4.1. Comatlas. (May 1995)

Chapter 2
Challenges and Limitations for Very High
Throughput Decoder Architectures
for Soft-Decoding

Norbert Wehn, Stefan Scholl, Philipp Schläfer, Timo Lehnigk-Emden,
and Matthias Alles

2.1 Motivation

In modern communications systems the required data rates are continuously
increasing. Especially consumer electronic applications like video on demand,
IP-TV, or video chat require large amounts of bandwidth. Already today’s
applications require throughputs in the order of Gigabits per second and very short
latency. Current mobile communications systems achieve 1 Gbit/s (LTE [1]) and
wired transmission enables even higher data rates of 10 Gbit/s (e.g., Thunderbolt
[2], Infiniband [3]) up to 100 Gbit/s. For the future it is clearly expected that even
higher data rates become necessary. Early results show throughputs in the order of
100 Tbit/s [4] for optical fiber transmissions.

Satisfying these high date rates poses big challenges for channel coding systems.
Software solutions usually achieve only very small data rates, far away from the
required speed of most applications. Therefore dedicated hardware implementations
on ASIC and FPGA are mandatory to meet the requirements for high speed signal
processing. To achieve speeds of Gigabits per second, these architectures need large
degrees of parallelism.

Parallelism and speed can easily be increased by running several single decoders
in parallel. This is however mostly an inefficient solution, because area and
power increase linearly with parallelism. Moreover it implies a large latency.

N. Wehn (�) • S. Scholl • P. Schläfer
Microelectronic System Design Research Group, University of Kaiserslautern,
Kaiserslautern, Germany
e-mail: wehn@eit.uni-kl.de; scholl@eit.uni-kl.de; schlaefer@eit.uni-kl.de

T. Lehnigk-Emden • M. Alles
Creonic GmbH, Kaiserslautern, Germany
e-mail: info@creonic.com

© Springer International Publishing Switzerland 2015
C. Chavet, P. Coussy (eds.), Advanced Hardware Design for Error
Correcting Codes, DOI 10.1007/978-3-319-10569-7__2

7

mailto:wehn@eit.uni-kl.de
mailto:scholl@eit.uni-kl.de
mailto:schlaefer@eit.uni-kl.de
mailto:info@creonic.com

8 N. Wehn et al.

Thus it is more advantageous to investigate efficient architectures specialized to high
throughput. This may also include modifications to the decoding algorithm itself.

An important metric for analyzing high throughput architectures is area effi-
ciency. Area efficiency is defined as throughput per chip area ([(Gbit/s)/mm2]).
The area efficiency can be increased significantly by new architectural approaches.

We present high throughput decoders for different application relevant coding
schemes, such as Reed–Solomon, LDPC and Turbo codes and point out their
benefits compared to state-of-the-art architectures.

2.2 Architectures for Soft Decision Reed–Solomon Decoders

2.2.1 Introduction

Reed–Solomon (RS) codes are utilized in many applications and communication
standards, either as a stand-alone code or in concatenation with convolutional codes,
e.g., DVB. They are traditionally decoded using hard decision decoding (HDD),
using, e.g., the well-known Berlekamp–Massey algorithm. However, using also the
probabilistic information—so-called soft information—on the received bits can lead
to large improvement of frame error rate (FER) in comparison to HDD.

Numerous algorithms have been proposed for soft decision decoding of RS
codes. They are using different approaches to achieve a gain in FER over HDD
with different complexities. A selection of interesting algorithms can be found in
[5–11]. This chapter will focus on the RS(255,239) and RS(63,55) codes, because
they are widely used in many applications.

Up to now, only few hardware implementations for ASIC and FPGA have
been proposed for soft decoding of RS codes, especially the RS(255,239). One
trend becoming apparent are implementations based on Chase decoding [7] and
the closely related low-complexity chase (LCC) algorithm [8]. Hardware imple-
mentations based on LCC exhibit low hardware complexity [12–14], but this low
complexity comes at the expense of a poor FER gain. Implementations based on
LCC provide only little FER gain over HDD of about 0.3–0.4 dB.

The design of hardware architectures for a larger gain in FER is more challeng-
ing. Architectures and implementations based on adaptive belief propagation and
stochastic Chase decoding exhibit a larger FER gain (0.75 dB), but having a low
throughput [15, 16].

In this chapter a third approach for soft decoding is described that enables a
large gain in FER and high throughput. It is based on a variant of the information
set decoding algorithm, for which an efficient architecture is presented. This
architecture shows a uncompromised gain in FER of 0.75 dB and a high throughput
that exceeds 1 Gbit/s on a Xilinx Virtex 7 FPGA [17].

2 Very High Throughput Decoder Architectures for Soft-Decoding 9

2.2.2 Information Set Decoding

This section introduces the algorithm, which is the basis of the high throughput
hardware architecture. First, the used variant of information set decoding called
ordered statistics decoding (OSD) algorithm [10] is reviewed. Then, a reduced
complexity version of OSD using the syndrome weight [18] is presented.

2.2.2.1 Original OSD

OSD has been proposed in [10] and belongs to the class of information set
decoders [19].

Basically information set decoding works as follows: First, divide the N received
bits ȳ into two groups according to their reliability. The bit reliability is determined
by the absolute value of the corresponding log likelihood ratio (LLR). The first
group contains the set of K reliable bits, called the information set. The second
group contains the M = N −K unreliable bits, also referred to as low reliable bit
positions (LRPs).

Before actual decoding starts the M LRPs are erased. Then the information set
is used to reconstruct the M erased bits using the M parity checks in the parity
check matrix H. To do so, H has to be put in a diagonalized form Ĥ via Gaussian
elimination. If the K bits of the information set are correct, all errors in the M LRPs
can be corrected. This is referred to as order-0 reprocessing in OSD or OSD(0).

To perform successful correction in the case of one error in the information set,
the reconstruction process is repeated several times, each time with exactly one
bit of the information set flipped. This results in a list of K +1 possible codewords
from which the best codeword is selected by evaluating the Euclidean distance to the
received LLRs. This improved decoding is called order-1 reprocessing or OSD(1).

A key part for understanding information set decoding is the reconstruction
process. To successfully reconstruct the M erased bits, the rows of the parity check
matrix are used, as mentioned before. It is required that the parity check equation
in each row covers mostly one of the erased M bits. To fulfill this requirement, H is
put into a diagonalized form by Gaussian elimination, such that each row covers not
more than one erased bit. Note that the Gaussian elimination does not change the
channel code itself, because an RS code is a linear code.

2.2.2.2 Reduced Complexity Algorithm for Hardware

The computational bottleneck of the original algorithm are the reconstructions of the
M erased bits. For example, in case of decoding an RS(255,239) with OSD(1) this
operation is required 2,041 times. To overcome this problem a reduced complexity
algorithm is utilized which makes use of the syndrome ŝ and its weight [18] that
enables fast and efficient reconstruction.

10 N. Wehn et al.

The reduced complexity algorithm starts (as the original OSD) with determining
the information set according to the bit reliabilities and diagonalization of H by
Gaussian elimination.

Original OSD then evaluates the parity check equations given by the rows of
Ĥ whereas the considered low-complexity algorithm merely uses the syndrome to
correct the corrupted bits.

Moreover, if the syndrome vector is calculated using the diagonalized parity
check matrix, i.e., ŝ = ĤȳT, two distinct cases for the binary weight of the syndrome
vector can be observed:

• The syndrome weight is small: In this case, it is assumed that only errors in the
M bits are present, i.e., OSD(0) processing is sufficient.

• The syndrome weight is large: In this case, it is assumed that also errors in the
information set are also present. Then OSD(1) processing is performed.

A fixed weight threshold to decide between the two cases is denoted by Θ ∈ N

and determined by simulation.
OSD(0) (small syndrome weight) is performed by simply flipping the M LRPs

that have led to the 1s in the syndrome vector. Conducting OSD(1) (large syndrome
weight) to correct one error inside the information set is done by first flipping the
bit position

j = argmin
i=0,...,N−1

wgt
(

ŝ⊕ ĥi

)

where ĥi denotes the ith column of Ĥ. After flipping the error inside the information
set at position j, the syndrome is calculated again and the remaining errors outside
the information set (i.e., among the LRPs) are corrected by performing OSD(0).

Note that this algorithm inherently determines the best codewords among the
possible candidates only by looking at the syndrome weight. It is sufficient to select
the candidate with smallest syndrome weight. In case of original OSD the Euclidean
distance between candidate and received LLRs had to be evaluated many times.

For more detailed information on the syndrome weight OSD please refer to
[18] or [17].

2.2.2.3 HDD Aided Decoding

One disadvantage of OSD over other soft decision decoding algorithms is the
tendency for a weak FER performance if SNR increases. To improve FER OSD
is extended with a conventional HDD, whose result is output if OSD fails.

A failure in OSD can be easily detected again by looking at the syndrome weight.
If after OSD(1) reprocessing the updated syndrome still has a large weight, OSD can
be considered as unsuccessful.

